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Epibatidine, a unique alkaloid, was originally isolated
from the skin of the Ecuadoran poison frog, Epipe-
dobates tricolor, by Daly and co-workers and has been
shown to have the structure exo-2-(2′-chloro-5′-pyridi-
nyl)-7-azabicyclo[2.2.1]heptane (1a).1,2 Later reports
showed that the natural alkaloid possessed the 1R,2R,4S
stereochemistry.3 Numerous biological studies have
demonstrated that epibatidine (1a) is a potent analgesic
agent.4 Its effects appear to be mediated via neuronal
nicotinic receptors (nAChRs); however, details of this
action at the molecular level have not been fully
elucidated. Nevertheless, epibatidine (1a) has been a
very useful tool for gaining new information concerning
the pharmacological properties of neuronal nAChRs.4
Recently, we synthesized and characterized the in

vivo binding properties of (+)- and (-)-exo-2-(3-[6-3H]-
pyridinyl)-7-azabicyclo[2.2.1]heptane (1c, [3H]norchlo-
roepibatidine, [3H]NCEPB) in rats.5 Both (+)- and (-)-
[3H]NCEPB bind with high affinity but with higher
levels of specific binding in vivo for nAChR as compared
to epibatidine (1a).5 Other investigators observed simi-
lar results with [3H]epibatidine.6 These studies sug-
gested that exo-2-(2′-fluoro-5′-pyridinyl)-7-azabicyclo-
[2.2.1]heptane (1b, norchlorofluoroepibatidine, NFEP)
might also have favorable binding properties and that
the fluorine-18 analog would be useful as a positron
emission tomography (PET) ligand for further charac-
terization of the nAChRs.

In this report, we present a synthesis of 1b which can
be adapted to provide a new synthesis of 1a and

compare the nAChR binding properties of 1a,b to that
of nicotine. We also report the synthesis of 7-(tert-
butyloxycarbonyl)-2-exo-[2′-(N,N,N-trimethylammoni-
umyl)-5′-pyridinyl]-7-azabicyclo[2.2.1]heptane iodide (2),
which is a more efficient precursor7,8 for the synthesis
of [18F]-1b (70% radiochemical yield)7 than exo-2-(2′-
bromo-5′-pyridinyl)-7-azabicyclo[2.2.1]heptane (1d) or
N-protected analogs.9-11

A number of different chemical syntheses3,12-23 of
epibatidine (1a) have been reported, including one from
our laboratory.15 A review of these methods suggested
that 1b might best be prepared by appropriate modifi-
cation of the synthesis of epibatidine (1a) reported by
Clayton and Regan.13 Their synthesis involved subjec-
tion of the olefin (3) to a reductive Heck arylation using
2-chloro-5-iodopyridine (4a) followed by removal of the
N-methyloxycarbonyl protecting group with hydrogen
bromide in acetic acid. This is the shortest synthesis
of epibatidine (1a) thus far reported and gives only the
desired exo product (1a).

We found that 1b could be prepared by the route
shown in Scheme 1. Since we knew that the 2-fluoro-
pyridinyl group of 1b would be more reactive than the
2-chloropyridinyl group of epibatidine, we chose to use
anN-tert-butyloxycarbonyl protecting group which could
be removed under milder conditions in place of the
N-methyloxycarbonyl group used by Clayton and
Regan.13 Thus, heating a solution of (p-tolylsulfonyl)-
acetylene13 (5) and N-(tert-butoxycarbonyl)pyrrole24 (6)
provided 65% of the diene 7. Nickel boride reduction
of 7 gives 86% of the olefin 8. Desulfonation of 8 using
2.5% sodium amalgam in a 1:1 mixture of ethyl acetate
and tert-butyl alcohol yielded 55% of the desired 7-(tert-
butoxycarbonyl)-7-azabicyclo[2.2.1]hept-2-ene (9). Cou-
pling of 9 with 2-amino-5-iodopyridine (4b) using pal-
ladium acetate as catalyst in dimethylformamide
containing tetrabutylammonium chloride and potassium
formate provided 68% of 7-(tert-butoxycarbonyl)-exo-2-
(2′-amino-5′-pyridinyl)-7-azabicyclo[2.2.1]heptane (10).
The 2-exo stereochemistry assigned to 10 was based on
an analysis of the 1H NMR (CDCl3) spectrum. The
spectrum showed a doublet of doublets at 2.74 ppm for
the H-2 proton with J2R,3â ) 5.0 Hz, J2R,3R ) 8.8 Hz, and
J2R,1 ) 0 Hz, which is characteristic of the 2-exo
stereochemistry.15 Diazotization25 of 10 in pyridine
containing 70% hydrogen fluoride effected conversion
of the 2-amino group to a fluoro group and deprotection
of the N-Boc group to give 46% of 1b. Compound 1b
could also be obtained by direct reductive Heck coupling
of 2-fluoro-5-iodopyridine (4c, obtained by diazotization
of 2-amino-5-iodopyridine (4b)13 in pyridine‚HF) with
9 to give 11 which on removal of the N-Boc protecting
group with trifluoroacetic acid gave the desired 1b.
However, this route was less desirable since the overall
yield was 39% and the coupling of 2-fluoro-5-iodopyri-
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dine (4c) with 9 took 4 days, whereas the coupling of
2-amino-5-iodopyridine (4b) with 9 was complete in 12
h. We also found that diazotization of 10 in hydrochloric
acid in the presence or absence of cuprous chloride gave
a 76% yield of epibatidine (1a) which was identical to
an authentic sample.15 This provided additional support
for the 2-exo structural assignment of 1a,b.
Kapp values for inhibition of [3H]NCEPB binding for

1a,b, and nicotine were obtained using a modification
of previously reported procedures.2,26 The data are
presented in Table 1 and Figure 1. For each compound,
the IC50 values obtained from three to four independent

competition binding experiments were used to calculate
Kapp values.27,28 The 20 pM Kapp value for 1b makes
this compound more than 100 times more potent than
nicotine at the nAChR. A recent report has shown that
[18F]-1b is an excellent PET ligand for mapping nAChR
in vivo, and it provides the first evidence for using this

Scheme 1

Table 1. Kapp Values for 1a,b and Nicotine at the nAChRa,b

compd X Kapp (nM) (SEM)

1a Cl 0.024 ( 0.001
1b F 0.020 ( 0.002
nicotine 6.2 ( 0.5

a The Kapp values are reported as mean ( SEM and were
calculated from 3-4 separate competition binding experiments.
b Compound 1b was characterized as its hydrochloride salt. C, H,
and N analyses were within 0.4% of theoretical values.

Figure 1. [3H]Norchloroepibatidine competition binding ex-
periments. The data represent the mean ( SEM from 3-4
binding experiments using 11-14 concentrations of test
compound run in triplicate with different rat forebrain
homogenate preparations for each experiment. The final assay
concentration of [3H]norchloroepibatidine (Kd ) 0.026 ( 0.002
nM; Bmax ) 5.7 ( 0.05 fmol/mg of tissue) was 30 pM.
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class of ligand to visualize nAChR in vivo with PET.7
The studies demonstrated a high brain uptake of [18F]-
1b in both baboon (12-15%) and mouse and high
specificity of its binding for nAChR in vivo. The high
thalamus to cerebellum ratio (4.0-4.5 in baboon at the
end of a 2-h study) used as the index for specific to
nonspecific binding provided a high signal-to-noise ratio
suggesting a new approach to investigate the nAChR
system and its role in neurodegeneration and addiction.
The synthesis of 2 and its conversion to 1b are shown

in Scheme 1. Reductive methylation of 10 using form-
aldehyde and sodium cyanoborohydride gives the 2-di-
methylamino compounds 12. Alkylation of 12 with
methyl iodide affords 7-(tert-butyloxycarbonyl)-exo-2-[2′-
(N,N,N-trimethylammoniumyl)-5′-pyridinyl]-7-azabicyclo-
[2.2.1]heptane iodide (2). Treatment of 2 with potas-
sium fluoride in dimethyl sulfoxide containing Kryptofix
gave a 75% yield of 11 which when treated with
hydrochloric acid provided 55% of 1b‚HCl. Details for
the synthesis of [18F]NFEP will be published elsewhere.
In summary, an efficient synthesis of exo-2-(2′-fluoro-

5′-pyridinyl)-7-azabicyclo[2.2.1]heptane (1b) and epiba-
tidine (1a) was developed. 7-(tert-Butyloxycarbonyl)-2-
exo-[2′-(N,N,N-trimethylammoniumyl)-5′-pyridinyl]-7-
azabicyclo[2.2.1]heptane (2) was synthesized as an
excellent precursor for the synthesis of [18F]-1b.
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